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A cluster of atoms is treated as a perturbed spherical shell or an assembly of concentric spherical shells. This leads to 
an approximate classification of the cluster orbitals in terms of angular momentum quantum numbers I and m and (for 
orbitals constructed from atomic A and 6 orbitals) the parity. The energies of the cluster orbitals are obtained approximately 
as functions of the quantum numbers and of the average angle w between neighboring sites on the sphere, in a way which 
is independent of the fine details of the structure. The cluster orbitals formed from atomic u orbitals increase in energy 
with I ,  but those formed from atomic A and 6 orbitals are, by and large, bonding or antibonding depending on their parity. 
The method yields a general proof of the usual electron-counting rules for boron hydrides and provides similar rules for 
transition-metal cluster compounds. It also explains the common preference for triangulated-polyhedral structures, as well 
as showing how departures from such structures can arise. 

1. Introduction 
The nature of the bonding in polyhedral clusters of atoms 

has been a topic of interest for more than 25 years and is still 
important. Accumulated experience has led to the formulation 
of electron-counting rules’-3 which are based on the well-known 
rule that a stable bonding scheme for an n-atom polyhedral 
cluster requires n + 1 electron pairs involved in skeletal 
bonding. Although this rule is “well-known”, its validity rested 
until recently only on a number of calculations which either 
dealt with specific systems4-’ (one of these’ being manifestly 
erroneous) or assumed a high (cubic or icosahedral) symmetry 
in the effective potentiaL6 Moreover, there is an exception: 
tetrahedral structures with five skeletal bonding pairs do not 
occur. A tetrahedron of atoms may be “electron precise”- 
that is, it may have the same number of skeletal electron pairs 
as edges, namely, in this case 6 or n + 2, rather than n + 1 
(the P4 molecule is an example)-or it may use only four 
electron pairs, as in B4C14. 

Another general rule which has been given no theoretical 
foundation rests on the empirical observation that polyhedral 
structures very frequently have triangular rather than square 
or pentagonal faces. Thus the triangular prism is generally 
less stable than the octahedron, and the cube is less stable than 
the square antiprism which in turn is less stable than the 
“triangular dodecahedron” (the latter being a Du structure 
obtained by distorting an octahedron capped on two adjacent 
faces so that an edge is formed between the capping atoms’). 

Recently, in an interesting series of papers, King and 
Rouvray8 used a graph-theoretical approach to derive an ex- 
planation of the n + 1 rule. However, their method is based 
on the Hiickel approximation in its simplest form and provides 
no explanation of the triangular-face rule, which it uses as a 
starting point. Moreover the graph theory provides infor- 
mation only on the distribution of eigenvalues and does not 
have anything to say about the form of the wave functions. 

The theory described here provides a simple explanation 
both of the general n + 1 rule and of the exceptional tetra- 
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hedral case. At the same time it provides a vivid pictorial 
approach to the bonding and explains the triangular-face rule. 
No assumptions are made about the symmetry or structure 
of the cluster; indeed the key assumption ignores the structure 
altogether and requires merely that the molecule can be 
treated, as far as the valence electrons are concerned, as a 
perturbed spherical shell. That this is not as gross an ap- 
proximation as might appear may be judged from the fact the 
conclusions apply quite as successfully to diatomic “clusters” 
as, for example, to icosahedral ones where the assumption of 
spherical symmetry might seem a better approximation. 

The method can be applied not only to the bare clusters 
themselves but also to compounds like the binary carbonyls, 
where a cluster of metal atoms is surrounded by a cluster of 
carbonyl ligands. We shall in fact be able to see why it is that 
the same electron-counting rules can be applied, if suitably 
interpreted, to the electron-rich transition-metal compounds 
as well as to the electron-deficient boron hydrides. Mingosg 
has offered an explanation of this in the light of a calculation 
on an octahedral cluster; the present work supports his view, 
but in a more general and visualizable fashion. 

The procedure we shall adopt is as follows. 
(i) We begin by considering a spherical system, for which 

the angular part of the wavefunction is separable from the 
radial part. The angular part is a solution of 

V2$ = -f(f + 1)$ (1.1) 
where 

The scalar solutions of eq 1.1 are the familiar spherical har- 
monics (or surface harmonics) YI,, labeled by integer quantum 
numbers f(10) and m (-I I m I I ) .  However we shall also 
use solutions of eq 1.1 in which $ is a vector or tensor function 
of position; these are the vector and tensor surface harmonics. 

(ii) The cluster is then treated as an assembly of atoms with 
nuclei arranged on the surface of a sphere. We obtain wa- 
vefunctions for this system by treating the magnitude of the 
spherical harmonic function at an atom site as the coefficient 
in an LCAO molecular orbital. This takes into account the 
actual structure of the cluster in a perfectly general way, except 
of course that variations in radial position are ignored. The 
procedure is not altogether novel; it can be used for example 
to derive the LCAO wavefunctions of a cyclic hydrocarbon 
C,H, from the wavefunctions of a particle on a circular ring 
or the wavefunctions of a linear polyene from those of a particle 
in a box. In both cases the results are precisely correct, though 
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in the latter case it is necessary to be careful about the 
treatment of the ends. It has also been used by Eberhardt, 
Crawford, and Lipscomb'O in a discussion of the bonding in 
BI2Hl2, though rather inconclusively, and in a general qual- 
itative and pictorial survey of molecular orbital theory by 
Hoffman, Ruedenberg, and Verkade." The present procedure 
is novel, however, in that the orbital energies are obtained in 
a quantitative, though approximate, way and in that the u and 
6 orbitals are treated by reference to vector and tensor surface 
harmonics, respectively. The importance of this cannot be 
overemphasized; attempts to classify orbitals by reference to 
ordinary spherical harmonics-in effect, by counting 
nodes-do not distinguish between the nodes that are intrinsic 
to the atomic orbitals concerned and the nodes between atoms 
which alone are associated with antibonding character. It was 
for this reason that Eberhardt, Crawford, and Lipscomblo were 
unable to reach a clear conclusion about the electronic 
structure of Bl2HI2. 

(iii) We next assume that, notwithstanding the lowering of 
symmetry implied in stage ii, the orbitals so constructed retain 
approximately the symmetry characteristics of the spherical 
harmonics from which they were derived: namely, that there 
is no mixing between orbitals which differ in 1 or m and that 
a set of orbitals with a given 1 share the same energy. The 
latter assumption makes it possible to use the properties of 
spherical harmonics to derive a simple expression for the en- 
ergy; the former implies that, after allowing for mixing between 
orbitals with the same I and m,  the orbitals derived from the 
spherical harmonics are in fact the correct molecular orbitals 
for the system. 

(iv) In this way we arrive at a classification of the cluster 
orbitals and their energies in terms of their 1 quantum number. 
Because of the (21 + 1)-fold degeneracy, this simplifies matters 
greatly, and because the spherical harmonics are so familiar, 
the nature of these sets of orbitals is very readily visualized. 
2. Radial (u) Orbitals 

We begin with the radial or u orbitals, namely, those that 
are constructed from atomic orbitals directed inward (or 
outward) from a cluster atom toward (or away from) the 
center of the cluster. We shall initially have in mind the 
polyhedral boranes, where the u atomic orbitals are mostly 
s in character. 

Now we know that if the cluster were indeed a sphere, the 
angular form of the molecular wave function would be a so- 
lution of eq l .  l-a spherical harmonic Yim(6',@). We transfer 
this wavefunction to our actual cluster, which has atoms 
distributed over a sphere at angular positions ( O i , @ i ) ,  with i 
= 1, 2, ..., n, and at approximately equal distances ri from the 
center. The spherical harmonic function values Ylm(Oi,@J are 
now interpreted as the coefficients ci in an LCAO molecular 
orbital = C,ciui formed from the u atomic orbitals up For 
an octahedral cluster we obtain the molecular orbitals illus- 
trated in Figure 1. There is one orbital with 1 = 0, which we 
may label as S and a set of three with I = 1 which we label 
as P. For the purpose of illustration, we use the real forms 
of the spherical harmonics, defined for m > 0 by1% eq 2.1. 

YlmC = 2-'/*[(-)"Y,, + Y,,-m] = 2'/2 Re(Y/,-,) 

YImS = -2-1/2i[(-)my,m - Yl,-m] = -21/2 Im(Y/,-J (2.1) 

The S orbital is evidently strongly bonding, and the P orbitals 
are nonbonding (or weakly antibonding if we allow for the 
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Figure 1. u orbitals for an octahedral cluster. 

antibonding trans interaction). When we come to the D or- 
bitals, with 1 = 2, we find only two nonzero ones, because d, 
d, and dyz are all zero at the positions of the atoms. The two 
nonzero orbitals are both strongly antibonding, so we see that 
the energy increases with I, as the node count would lead us 
to expect. There can be only six independent orbitals, so this 
completes the list. If we were to continue with 1 = 3 ,4 ,  etc., 
any nonzero orbitals that we might find would be expressible 
as linear combinations of these six. 

These orbitals will be familiar as the symmetry orbitals for 
an octahedral set of six Q ligands, and indeed they were derived 
long ago for the B6 octahedron by Longuet-Higgins and 
R0be1-b.~ Here the high symmetry of the octahedron ensures 
that the spherical harmonic method yields precisely the correct 
orbitals for the system (remember that we are ignoring the 
interaction with the surface orbitals for the time being). 
However we anticipate that, even in clusters of low symmetry, 
the method will yield a set of n orbitals which will be mixed 
only slightly with each other by the low-symmetry part of the 
Hamiltonian. The major low-symmetry effect-the concen- 
tration of the atomic core potential at the atom sites-has 
already been incorporated by the transition from the basic 
spherical harmonic function to the LCAO wavefunction. 

The energy Wlmu of one of these orbitals is givenjy the 
usual quantum-mechanical formula as eq 2.2 where F is the 

Fock operator (effective one-electron Hamiltonian) for the 
system. According to our assumptions, W,, will not depend 
much on m, so we seek an average value W, which will serve 
for all 21 + 1 orbitals in the set. This cannot be a simple 
average of the form ~,W~,,,"/(21 + l) ,  however, because some 
of the tJrmu may vanish, as we have seen, and the corresponding 
W,' is then undefined. Partly for this reason, but also because 
the ensuing algebra takes a particularly simple form, we take 
a weighted mean (eq 2.3). 

Now the numerator of this expression is 

where 

Fiju = $ui*fiuj dr (2.5) 

and a standard theorem (the spherical harmonic addition 
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Figure 2. Energies of u orbitals in arbitrary units. 

t h e ~ r e m ' ~ ~ J ~  tells us that the quantity in braces depends only 
on the angular separation wij between the two sites i and j .  In 
fact 

CY/m(ei,cci)*Y/m(ej,ccj) = [ ( 2 1 +  1)/4*IP/(co~ wij) 
m 

(2 .6)  

where PAX) is the Legendre polynomial of degree 1 in x .  Thus 
eq 2.4 becomes 

[(21+ 1)/4A]~P(wij)Pl(cos Oij) (2 .7)  
ij 

where we have made explicit the fact that the matrix element 
Fi; depends, in view of our assumptions, only on the angular 
separation of the sites. 

In the denominator of eq 2.3 we have exactly the same 
result, except that the matrix elements Fij" are replaced by 
overlap integrals 

and the average energy becomes 

W/" = [CF(wij)P/(cos wij)] / [CS"(wi j )Pl (~~s wij)] (2 .9)  
11 ij 

This is already quite a simple expression, but it becomes 
more illuminating if we make the Hiickel approximations: 

Sij=O i # j  

F i / = a u  i = j  
8" i, j neighbors 
0 otherwise 

and assuming also that all neighboring pairs have approxi- 
mately the same angular separation w,  we find that 
W," = [ n d  + 2eP"Pl(cos w)]/n = a" + (2e/n)/?'Pl(cos w )  

(2.10) 

where e is the number of neighboring pairs-that is, the 
number of edges in the polyhedron of atoms. The quantity 
-Pl(cos w )  is plotted, for 1 = 0-5, in Figure 2 for values of w 
from 180°, corresponding to n = 2, down to about 40°, cor- 
responding roughly to n = 32. A nonlinear scale (abscissa 
proportional to l /o )  is used so that points between w = 70' 
and w = 40°, where n increases rapidly, are well separated. 
Note that the quantities plotted are functions of w and that 
values of n are shown only as a guide. WZu does not enter the 
picture until n = 5 ,  because S" and Pa orbitals suffice for n 
I 4, and in this region WZu is meaningless because the $2mu 

(13) Brink, D. M.; Satchler, G. R. "Angular Momentum"; Oxford University 
Press: London, 1971; p 54. 

Figure 3. r-symmetry orbitals for an octahedral cluster. 

are linear combinations of and the $lmu. Similarly W3" 
is not shown for n I 9 and so on. 

It is evident that the energy increases monotonically with 
I, as would be expected on intuitive grounds. We defer further 
discussion until the r orbitals have been dealt with but note 
particularly before we move on the factor (2eln)  which appears 
in eq 2.10. 
3. Surface ( r )  Functions 

By A orbitals we mean, in accordance with the usual con- 
vention, those atomic orbitals which have exactly one node 
containing the radius vector from the center of the cluster to 
the atom in question. To see that an approach based on 
ordinary spherical harmonics, or in effect on counting nodes, 
is likely to fail, consider the r-symmetry orbitals for the oc- 
tahedral cluster, depicted in Figure 3. Ignore for the moment 
the designations P", D", etc. and observe that the t2, orbitals, 
which have two nodal planes, are likely to be more strongly 
bonding than the tl,, which have only one, and are certainly 
not to be compared in energy with the D" orbitals (Figure l),  
which also have two nodes. The difficulty is evidently due 
mainly to the fact that the nodes in this case are intrinsic to 
the p orbitals themselves, so that their presence does not confer 
any antibonding character. However, if these nodes are dis- 
regarded, we are left with no nodes by which the relative 
energies may be estimated. Furthermore, although there are 
no nodes of an antibonding nature, these orbitals are clearly 
not to be classified as S type. 

The solution to this problem lies in the observation that a 
set of p orbitals on any one atom behaves like a set of unit 
vectors. If therefore we can find a vector function of 0 and 
4 which satisfies eq 1 . 1 ,  we can interpret its direction and 
magnitude at any site on the sphere as the direction and 
magnitude of a p orbital contribution to a wavefunction. Such 
functions are known; they are called vector surface harmonics 
and have been used in cosm~logy'~ and in the study of stellar 
 pulsation^,'^ as well as in the description of light propagation 
and scattering from a point source.16 Their properties have 
been summarized, rather tersely, by Sandberg." The 
mathematical details of the application of these functions to 
the present problem will be given elsewhere;'* we note here 
only that from each spherical harmonic Y,, we can construct 
two vector surface harmonics: one (called here "even") which 

(14) Lifshitz, E. M.; Khalatnikov, I .  M. Adu. Phys. 1963, 12, 185. 
(15) Regge, T.; Wheeler, J.  A. Phys. Rev. 1957,108, 1063. Thorne, K. S.; 
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(16) Tough, R. J. A,; Stone, A. J .  Mol. Phys. 1979, 37, 1469. 
(17) Sandberg, V. D. J.  Math. Phys. ( N Y )  1978, 19, 2441. 
(18) Stone, A. J. Mol. Phys., in press. 
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Figure 4. Even vector surface harmonics for I = 1 and 2. mc and 
ms label the real and imaginary parts of V,, form # 0, defined by 
analogy with eq 2.1. 

Figure 5. Odd vector surface harmonics for 1 = 1 and 2; notation 
as for Figure 4. 

has the same behavior under the operation p of inversion as 
the parent Yrm 

with 
V/m = VY/m ( 3 . 1 )  

pV/m = ( - 1 ) ’ V i m  

TI ,  = r A vu/, 

PT/m = (-l)/+lv/m 

and one which has the opposite parity (“odd”) 

with 
(3 .2)  

These even and odd vector functions are illustrated in Figures 
4 and 5 .  For purposes of illustration we use the real forms 
of the functions, defined by analogy with eq 2.1, and for each 
component the magnitude and direction of the function are 
shown at a number of points on the unit sphere by the length 
and direction of an arrow centered on each point. Note that 
there is no Voo or Too, because Yoo is a constant function. 

Now we may construct wavefunctions, as envisaged above, 
from each kind of vector surface harmonic. We shall obtain 
2n independent functions, n of them from the “even” sequence 
and n from the “odd”. The energies of these functions can 
be evaluated in much the same way as was described above 
for the u functions; the details are given elsewhere.18 In the 
Huckel approximation the energies W,’ of the even functions 
and FP of the odd functions take the form ( 3 . 3 ) ,  where w,‘(w) 

W,“ = a* + (2e/n)wl*(w) 

( 3 . 3 )  
and @(I*(w) are certain functions given in ref 18.  Note once 
again the factor ( 2 e l n ) .  In the numerical evaluation of the 

PIr = a* + ( 2 e / n ) ~ ~ ‘ ( u )  

2 3 1  6 12 n 21 
‘ B O  120 90 60 50 o LO 

Figure 6. Orbital energies for ?r orbitals, calculated by using the 
Hiickel approximation with parameters derived from a minimal basis 
set (STO-6G) SCF calculation on B6H2-. 
quantities w i  and Wi, two B values are required, namely, P,“ 
to describe u overlap of the A orbitals on adjacent sites and 
8,“ to describe A overlap. The ratio of these two values is the 
only effective parameter, and its value does not affect the 
general pattern of the energy levels very much. In Figure 6 
are illustrated the energies calculated by using parameters 
derived from a minimal basis set (STO-6G) SCF calculation 
on B6H6. The energies of the even functions are labeled P“, 
D“, F“, etc., corresponding to I = 1 ,  2, 3 ,  etc., and those of 
the odd functions are labeled F, D“, F“, etc. We see that the 
former are bonding and the latter antibonding; this is in 
agreement with the graph-theoretical conclusion8 that n of the 
?r cluster orbitals are bonding and n antibonding but is much 
more explicit. 
4. Bonding in Boron Hydrides 

We may now study Figures 2 and 6 in the expectation that 
the energies shown will be a good guide to the bonding in real 
clusters where d orbitals are not important-for example, in 
the boron hydrides. The first general point to note is that the 
nature of the polyhedron describing the shape of the cluster 
enters the energy expressions in two ways only: first, in the 
multiplicative factor (2eln)  which appears in eq 2.10 and 3.3 ,  
and second, in the value of w .  Because of the first of these, 
Figures 2 and 6 should be thought of as scaled vertically by 
(2eln) .  Therefore so long as no antibonding orbitals are filled 
(and possibly even if some are) the bonding energy will be 
maximized if e is maximized. Consideration of Euler’s theorem 
for polyhedralg 

n + f =  e +  2 
wherefis the number of faces, shows that for a fixed number 
n of vertices, the number of edges is maximized when the 
number of faces is maximized. This in turn occurs when all 
the faces are triangular, so we have a very simple and general 
explanation of the triangular-face rule. 

A similar effect occurs in metals, where the cohesive energy 
is found empirically to be proportional to the square root of 
the number of nearest neighbors of each atom,*O which is just 
the quantity (2e ln)  in the present notation. The absence of 
the square root in the present analysis arises because we have 
ignored so far the effect of a change of structure on the value 
of w. We return to this below. 

Examining Figure 6 in detail, we may observe that the 
energies of the even surface functions decrease (become more 
bonding) as 1 increases, so long as the 1 values remain mean- 

(19) Lakatos, I. “Proofs and Refutations”; Cambridge University Press: 
London, 1976. 
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Figure 7. Orbitals for a diatomic cluster. 

ingful. These orbitals are bonding for all n, though with some 
choices of 0," and 0," the P" energy, W,", may become an- 
tibonding for large values of n. However we must, as Hoff- 
mann and Lipscomb4 noted, allow for mixing between the u 
and a orbitals. The P" and P" orbitals will repel each other 
in energy, and without the need for any quantitative calcu- 
lations we can see that there will always be one bonding and 
one antibonding (or perhaps nonbonding) set of P orbitals. 
There is a similar interaction between the D" and D" orbitals, 
and again one of the resulting energies will be bonding and 
one antibonding. We will run out of orbitals in the u series 
just before we run out of ?F orbitals, because the u orbitals start 
with an S" orbital whereas the a orbitals start with P". But 
the last orbital in the K sequence, the one with no u partner, 
is already bonding in most cases, though examination of Figure 
6 shows that this may not be true in the tetrahedral case, where 
w = 109.5'. Consequently the n a orbitals can all be thought 
of as correlating with bonding orbitals (although some of them 
may be largely or predominantly u in character), while the 
n u orbitals correlate with antibonding orbitals, with the single 
exception of the S", which is always bonding. 

The Wl", on the other hand, are antibonding for any rea- 
sonable choice of p," and p,". According to our hypothesis, 
there will be no interaction between the P* and the P" or P" 
because they differ in parity. If the actual structure lacks a 
center of symmetry, there may be a weak interaction which 
will merely make the P" more antibonding and the P' more 
bonding. In the same way, interactions between orbitals 
differing in 1 or m will occur, because the symmetry is not 
really spherical, but they are unlikely to affect the energy level 
pattern significantly. 

The total number of bonding orbitals is therefore n + 1 
exactly. Let us look at some particular cases in more detail. 

Diatomic: n = 2, w = 180". It is stretching credulity a little 
far to treat this as spherical. Nevertheless, a study of Figures 
2 and 6 shows that there is an S" orbital and two P" orbitals, 
all bonding, and a P" and two P" orbitals, all antibonding. 
Filling the three (n + 1) bonding orbitals gives the electronic 
structure of N2, the most strongly bound diatomic, or of 
acetylene. To derive the P" orbitals, we refer to Figure 4, 
where the three VI, are illustrated. The two atoms of the 
cluster can be placed at any two diametrically opposed points, 
and we choose the "north pole" and the "south pole", so that 
the atoms lie on the I axis. In the m = 0 case, these are 
positions where the vector function VI, vanishes, so the cor- 
responding cluster orbital vanishes also. From the functions 
Vllc and Vlls  we obtain cluster orbitals by replacing the arrow 
at each atom position by a p orbital with its positive lobe 
directed toward the head of the arrow. This gives two nonzero 
p" functions, which are illustrated in Figure 7. A similar 
procedure using the TI ,  yields the P" functions. 

Triatomic: n = 3, w = 120'. Here there is an S" orbital 
(bonding), three P" orbitals (bonding), and two P" and three 
P orbitals (antibonding) (Figure 8). Filling the n + 1 bonding 
orbitals gives the electronic structure of the cyclopropenyl 

A 

Figure 8. Orbitals for a triatomic cluster. 
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Figure 9. Orbitals for a tetrahedral cluster. 

cation. The degeneracy of the P" and P" orbitals is split by 
the low symmetry, but the qualitative picture is not affected. 

Tetraatomic: n = 4, w = 109.5'. Here we have an S" 
orbital (bonding) and three P" orbitals (antibonding) (see 
Figure 9). There are three P" orbitals (bonding) and three 
P orbitals (antibonding). There is one D" and one D" orbital, 
which according to Figure 6 are approximately nonbonding. 
Consequently the four bonding orbitals may be filled, as in 
B4C14, or the nonbonding orbitals may also be filled, as in P4. 

This account may well seem rather glib, and indeed it does 
not explain why we should not fill only the D" and not the 0" 
to give, apparently, a satisfactory 5-orbital bonding scheme. 
To see why this is not possible calls for a little special pleading 
but also throws some light on the extent to which the method 
can be trusted in general. 

Standard group-theoretical methods show that the P" and 
P" orbitals transform according to T2 under the symmetry 
group Td and that the P transform according to TI .  The D" 
orbitals transform according to E + T2 and the D" according 
to E + T1. Thus both-the D* and the D" yield a pair of E 
functions, which are in fact identical and are the required 
orbitals, since the a orbitals transform as E + TI + T2 overall. 
(The D" and B" orbitals need not be orthogonal in this case 
because of the lack of a center of symmetry.) The remaining 
D" orbitals must be linear combinations of the orbitals already 
found, and because they are of T2 symmetry, they can only 
be the P". The calculated D" energy, which is a weighted 
average over all five orbitals, is therefore an average of the 
required E orbital energy and the T2 or  P" and will be too low. 
Similarly the calculated 0" energy will be contaminated by 
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the T i  or P' and will be too high. The required energy will 
be somewhere between these two limits and can be expected 
to be approximately nonbonding, as stated above. Also because 
the orbitals belong to the E representation, they are degenerate, 
and both or neither must be filled for a stable configuration. 

It is apparent that the predictions of the theory must be 
treated with caution when only a few of a set of orbitals with 
a particular I are significant and the rest are not null. For- 
tunately the prospects are better in general than the tetrahedral 
case might lead us to suppose, for inspection of Figures 2 and 
6 shows that new sets of orbitals are usually strongly bonding 
or antibonding when they enter the picture, so that errors in 
their energies are unlikely to modify the qualitative conclusions 
of the theory. 

Octahedron: R = 6, w = 90'. We see here an S" orbital 
(bonding), three P" orbitals (nonbonding), and two D" orbitals 
(antibonding) as previously shown in Figure 1. Also there are 
three P" and three D" orbitals, all bonding, the P" made more 
so by interaction with the P" which become antibonding as a 
result. Finally the P" and the D" are antibonding and do not 
mix with any of the other orbitals (Figure 3). Thus there are 
in total seven bonding orbitals, as established by Longuet- 
Higgins and R ~ b e r t s . ~  

Icosahedron: n = 12, w = 63.4O. Here we have one S" and 
three P" (bonding) and five D" and three F" (antibonding). 
There are three P", five D", and four P orbitals, all bonding, 
but the interaction between P" and P" yields one bonding set 
and one nonbonding or antibonding set, so that there are 13 
bonding orbitals in all, as Longuet-Higgins and Roberts 
~ h o w e d . ~  The three P*, five D*, and four F* orbitals are all 
antibonding. It will be observed that the result is obtained 
quite unambiguously, whereas the attempti0 to determine 
orbital energies from nodal structure alone (i.e., by relating 
the tangential orbitals to ordinary spherical harmonics rather 
than vector surface harmonics) was unable to discriminate 
between what we call here the F" and the F". Moreover we 
have no need to inspect the orbitals to determine their energies, 
though their form can be obtained readily if required with the 
help of Figures 4 and 5 .  
5. Relationship between Structures 

Let us return now to an examination of the effect of a 
change of structure on the bonding. We consider for defi- 
niteness the relationship between the octahedron and the 
trigonal prism, but the conclusions are more general. Two 
things happen when the structure is changed from octahedral 
to trigonal prismatic: the value of (2eln) falls from 4 to 3, 
and the value of w falls from 90 to 82O (=2 arctan (3'12/2)) 
if all bond lengths remain equal. Now Figure 2 shows that 
this change in w causes a marked drop in the energy of the 
P" orbitals, which are the lowest unoccupied orbitals in the 
Bs2- cluster, while there is little change in the S" energy or 
in the T orbital energies (Figure 6). For the Bs2- cluster, 
therefore, there is no advantage in adopting the trigonal-prism 
structure. If some of the P" orbitals were occupied, however, 
the considerable lowering of their energy could be expected 
to offset the loss of bonding energy caused by the adverse value 
of (2eln). This evidently happens in prismane, CsH6, which 
has 9 skeletal electron pairs. We can expect quite generally 
that the presence of more than n + 1 electron pairs will favor 
the adoption of a more open structure than the fully trian- 
gulated polyhedron. 
6. Transition-Metal Clusters 

The bonding in transition-metal clusters is more compli- 
cated, but for this very reason a systematic classification can 
be particularly valuable. There are several sources of com- 
plication. 

(i) Whereas in the boron hydrides we could treat the u 
orbitals as mostly s, we have in the transition-metal case three 

Stone 

3c@ 4 f  ($435 

Figure 10. Even tensor surface harmonics for I = 2 and 3. mc and 
ms label the real and imaginary parts of TI,,, for rn # 0, defined by 
analogy with eq 2.1. 

kinds of u orbital, which for a first-row transition-metal atom 
at = 4 = 0 are the 4s, 4p,, and 3d,Z orbitals. From each 
kind of atomic orbital we can derive a set of n orbitals 
which we refer to below as the s", p", and d" sets. Their 
energies are evaluated by the same procedure as before, but 
we must remember that the symmetry axes of u orbitals on 
adjacent atoms are inclined at  an angle w to each other. If 
the nuclearity of the cluster changes, the distance between 
atoms will not change, at least to a rough approximation, but 
the angle w between neighbors will change, and this will modify 
the Fock matrix element (resonance integral) in the p" and 
d" cases. This does not however cause any fundamental dif- 
ficulty; and in particular it does not affect the qualitative 
pattern of u energy levels shown in Figure 2. 

(ii) Similarly the T orbitals comprise, for an atom at (O,O), 
not only the 4px and 4py but also the 3d, and 3d,. These pairs 
each give rise to an even and an odd set of which we 
denote by p", p" and d', d' in what should be an obvious 
notation. Again the matrix elements depend in different ways 
on the angle between neighbors, but again the qualitative 
energy level pattern is not significantly different. 

(iii) There are also 6 orbitals to contend with. For an atom 
at (0,O) these are the 3 d + 2  and the 3d,. They are handled 
by using tensor surface harmonics; the details will be given 
elsewhere,'* and we give here only a summary of the results, 
since it emerges that the 6 orbitals are essentially nonbonding. 

In many ways these are 
analogous to the vector surface harmonics. Two tensor surface 
harmonics can be constructed from each Y,,,,: an even one TI,,,, 
with the same parity as the parent spherical harmonic, and 
an odd one TI,,,, with the opposite parity. The first allowed 
value of I is 2. These functions are illustrated for I = 2 and 
3 in Figures 10 and 11, which show the real forms, defined 
by analogy with eq 2.1. The figures are most easily understood 
in terms of the wave-functions which are to be constructed 
from each harmonic; the arrows from each site represent the 
directions of the positive lobes of a d6 orbital which would be 
the contribution to the wavefunction of an atom at that site, 
while the length of each arrow is proportional to the magnitude 
of the LCAO coefficient. 

As in the case of the and the and turn 
out to be bonding and antibonding, respectively, and tend to 
become more bonding or antibonding with increasing 1. Once 
again, the energies are proportional to (2e/n) in the Hiickel 
approximation. The strength of bonding or antibonding 

Tensor Surface Harmonics. 
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Table I. Cluster Orbitals Formed from Atomic 
s, p, and d Orbitalsa 
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Figure 11. Odd tensor surface harmonics for 1 = 2 and 3; notation 
as for Figure 10. 

character is however weaker, by a factor of 2 or 3 ,  than for 
the corresponding d" orbitals, and in any case the strength of 
interaction between d orbitals on neighboring atoms is weaker 
than for s and p orbitals. An SCF calculation on Fe2 at an 
internuclear separation of 5 bohr radius (2.6 A), using the 
minimal basis set recommended by Basch et al.*' showed that 
the largest 3d-3d Fock matrix element was about -0.8 eV, 
whereas the 4s-4s Fock matrix element was about -2 eV. 
Thus we can expect the d6 orbitals to have very little effect 
on the bonding and to be occupied in all transition-metal 
clusters. 
7. Bonding in Transition-Metal Clusters 

We are now in a position to survey the bonding in transi- 
tion-metal clusters and their compounds. First, we note that 
the metal cluster can be expected to adopt a triangulated- 
polyhedral structure, because of the (2e ln )  factor in all the 
energy formulas, It is worth noting in this connection that 
the ligands also frequently adopt a triangulated-polyhedral 
structure, for reasons which are not understood, and it may 
be conjectured, notwithstanding the prevailing view to the 
contrary, that this is evidence of some interaction between 
occupied orbitals on one ligand (such as the CO u or r) and 
vacant orbitals on its neighbors (such as the CO r*), for this 
too would lead to a stabilization proportional to (2eln) .  

We adopt the approach on which is based the 18-electron 
rule for mononuclear complexes of group 8 transition metals: 
we suppose that all valence orbitals (3d, 4s, and 4p in the case 
of a first-row transition metal) will be occupied either by 
electrons from the metal itself or by electrons donated from 
the ligands; except that in the polynuclear case we shall find 
orbitals which are both high in energy and directed toward 
the center of the cluster, so that they are not available for 
bonding and remain vacant. For clusters with nuclearity 
greater than 4 it emerges that there are 2n - 1 such orbitals, 
leaving 7 n  + 1 available for cluster bonding. Moreover, as 
noted by Mingos9 in the octahedral case, the 2n - 1 inaccessible 
orbitals correspond directly to the 2n - 1 vacant orbitals in 
a boron hydride with the same structure. In deriving this result 
it will be necessary to make certain assumptions as to the 
relative energies and the strength of interaction of the various 
sets of orbitals concerned, and these assumptions may not be 
universally valid. However the method, being essentially an 

no. and type of cluster orbitals atomic orbital 
orbital sequence 

S S" 1 &O 3 P," 5 D," I F," 
P P" 1 SP" 3 P," 5 D," IF," 

iin 3 pp= 5Dpn l F p n  
Pn 3 3" 5_Dpn 7_Fp= 

For a cluster of n atoms, the required orbitals are obtained by 
taking the fust ?I nonzero orbitals in each row. 
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Figure 12. Scheme of even orbital energies for a transition-metal 
cluster. 

approximate classification by symmetry, is not dependent on 
the details of such assumptions, and the arguments can easily 
be modified to take account of different circumstances. 

With this caveat established, we proceed. We treat the 
ligands, like the metal atoms, in cluster terms, so that the u 
donor orbitals form a sequence of S", P", etc. orbitals. We 
then anticipate that for any vacant and accessible metal orbital 
there will be a ligand u orbital of the same symmetry to act 
as a donor orbital. This may be a false assumption for some 
ligand geometries, in which case the electron-counting rules 
will have to be modified, as happens in the mononuclear case 
for square-planar Ni, Pd, and Pt complexes. Apart from this, 
the detailed arrangement of the ligands is not considered, and 
indeed is largely irrelevant. The detailed structure is not, on 
this view, a reflection of major bonding effects. Any rea- 
sonably sane distribution of the ligands around the metal 
cluster will result in satisfactory bonding if the electron count 
is satisfactory, and the detailed structure is a matter of op- 
timization among a range of broadly satisfactory structures. 
Johnson's view,22 that the structure is determined primarily 
by packing considerations, is entirely consistent with this, for 
good packing of the ligands around the metal cluster ensures 
stronger bonding overlap. Again, the frequently observed 
fluxional behavior of such molecules, which can be explained 
very simply in terms of the metal cluster rotating within the 
ligand fits very well with a model in which reasonably 
satisfactory bonding can be maintained at any relative ori- 
entation of the metal and ligand clusters. 

The orbitals available can be classified in the way outlined 
above, as follows. We ignore initially the interaction between 
different sets of orbitals. 

( 2 1 )  Basch, H.; Hornback, C. J.; Maskowitz, J. W. J .  Chem. Phys. 1%9,51, 
1311. 

( 2 2 )  Johnson, B. F. G .  J .  Chem. Soc., Chem. Commun. 1976,211. Johnson, 
B. F. G.; Benfield, R. E. J .  Chem. Soc., Dalion Trans., 1980, 1743. 
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Figure 13. Scheme of odd orbital energies for a transition-metal 
cluster. 

4s Orbitals. These form the s" sequence, comprising one 
S,", three P,", five D,", etc., from which we take the first n 
nonzero orbitals. These orbitals increase in energy from 
bonding to antibonding as we proceed along the series from 
1 = 0. See Figure 12 and Table I. 

4p Orbitals. These form the p" sequence, comprising Sp", 
Fpu, Dp", etc, the p" sequence Ppr, Dp", etc., and the p" sequence 
Pp", D ", etc. From each sequence we take the first n nonzero 
orbitafs. The energies of the p" sequence are similar to those 
of the s" sequence, but somewhat higher; the p' are bonding, 
by and large, with energy decreasing with increasing I (Figure 
12), while the p" are antibonding, with energy increasing with 
increasing 1 (Figure 13). The even and odd orbital energies 
are shown on separate diagrams to avoid confusion as far as 
possible; remember that according to our assumptions they 
do not mix. 

3d Orbitals. These form a set of n d" orbitals, a set of n d" 
orbitals (even), and a set of n d" orbitals (odd), much as for 
the 4p orbitals but at lower energy, and a set of n even and 
n odd orbitals from the d6 and d* sequences, comprising Dt, 
Ft, etc. and D t ,  pi, etc., respectively. 

Now let us consider qualitatively how the interaction be- 
tween the sets of orbitals with the same symmetry will affect 
the energy level pattern. Consider first the odd orbitals (Figure 
13). Interaction between the PPI and the Pd" will push the 
former up in energy and the latter down. What can we say 
about the spatial distribution of the resulting molecular or- 
bitals? The higher of the two sets is strongly antibonding (both 
P,* and Pd" are antibonding to begin with), and it can only 
achieve that if the orbitals mix in such a way as to point inward 
toward the center of the cluster. Thus this set of orbitals is 
not only antibonding, but inaccessible to ligand electrons; it 
will remain empty. The lower of the two resultant sets of 
orbitals, on the other hand, is relatively weakly antibonding, 
which it can achieve only if the orbitals hybridize in such a 
way as to point outward, so minimizing the interaction between 
orbitals on neighboring atoms. These orbitals, therefore, are 
good acceptors for ligand electrons. In the same way, inter- 
action between the Dpz and the D d "  will yield a strongly an- 
tibonding set of inward-pointing orbitals and a relatively 
weakly antibonding set of outward-pointing orbitals. The 
presence of the Dd6 will not modify this picture significantly, 
and we may expect them to be occupied and not greatly in- 
volved in ligand bonding. The same applies to the F, G, etc. 
orbitals if the nuclearity is high enough for them to enter the 
picture. In terms of orbital counting, then, we can regard the 
n p" orbitals as correlating with n inaccessible antibonding 
orbitals, while the remaining odd molecular orbitals are filled 
either by metal electrons or by donation from ligands. 

The diagram (Figure 12) for the even orbitals contains two 
kinds of orbital sequence. The s", p", and d" progress from 
strongly bonding when I = 0 to strongly antibonding for the 
largest relevant value of I. The p", d", and d* orbitals, on the 
other hand, are bonding for all relevant 1. The S" orbitals will 
mix with each other, to yield one strongly bonding orbital 
(which will necessarily be composed of inward-pointing hy- 

brids), one of intermediate energy, and one of higher energy. 
Even the highest of these can have no nodes between the atoms 
and so is at  worst nonbonding, and it can only achieve that 
by being composed of outward-pointing hybrids. Consequently 
it is a good acceptor orbital if not actually bonding. 

We may in fact generalize as follows. Orbitals which are 
strongly bonding within the cluster must be inward-hybridized 
to achieve the necessary bonding overlap; they will be inac- 
cessible to the ligands but occupied by cluster electrons. 
Orbitals which are strongly antibonding will be inward-hy- 
bridized for the same reason; they will be inaccessible to 
electrons and will remain empty. Orbitals which are inter- 
mediate in energy will tend to be outward-hybridized, whatever 
their energy they will be accessible to ligands and so will be 
occupied either in their own right or as a result of donation 
from the ligands. 

Turning now to the even P orbitals, we have a more com- 
plicated picture, with five sets of orbitals to consider. Moreover 
the picture is different for low and high nuclearity. For low 
nuclearity, the P" orbitals are antibonding, while the P" are 
quite strongly bonding. We expect mixing of the P" to yield 
a strongly antibonding, inaccessible set and two less strongly 
antibonding, more accessible sets. For higher nuclearity ( n  
> 6 ) ,  the P" orbitals are bonding and the P" weakly bonding 
or antibonding, so it is the latter which combine to yield an 
inaccessible set. The result in terms of electron counting is 
the same: one of the five sets of P orbitals is inaccessible. The 
appearance of the weakly bonding d6 orbitals does not change 
the picture for the D, F, etc. orbitals. By the time the orbitals 
are all used up, however, we know that the most strongly 
antibonding orbital is one of the Q ones. Thus for the purposes 
of orbital counting we may consider that, for each value of 
I except I = 0, the p" set of orbitals is inaccessible to electrons. 
This gives n - 1 inaccessible orbitals, which with the n inac- 
cessible odd orbitals makes 2n - 1 inaccessible orbitals in all. 
Note that the inaccessible orbitals comprise (or more precisely, 
correspond in symmetry with) a p" set and all but the S" 
member of a p" set and in this respect are precisely analogous 
to the vacant orbitals in a boron hydride. We see therefore 
in a quite general way what Mingos9 pointed out for the oc- 
tahedral case, that the same electron-counting rules work for 
the electron-rich transition-metal complexes as for the elec- 
tron-deficient boron hydrides because of the similarity of the 
vacant orbitals in the two cases. L a ~ h e r ~ ~  has also stressed 
the importance of the antibonding orbitals in the derivation 
of the electron count. 

We can expect that the tetrahedral cluster will not obey this 
general rule, for the same kind of reason as before. A mo- 
noatomic "cluster" clearly does not, for none of its 9 orbitals 
is inaccessible to electrons, except in well-understood cases such 
as the square-planar platinum complexes. We had better treat 
the diatomic and triatomic clusters, as well as the tetraatomic, 
as special cases, though still within the general framework of 
the scheme. 

Tetrahedral Clusters. The general argument applies quite 
nicely to the S, P, and D orbitals, yielding 6 inaccessible 
orbitals. There are no D" orbitals; the D,' and Dp" must be 
taken together as an E pair, as before, and so must the Ddr 
and the Dd". The 6 orbitals, like the ?r orbitals, transform as 
TI  + T2 + E in Td, and of these the TI  and T2 will mix with 
the corresponding P orbitals, but probably not to any great 
extent. In any case, mixing of d6 orbitals with p" or d" GiMOt 
yield a hybrid which points inward or outward, so there will 
be no change in the number of inaccessible orbitals. There 
remain, then, three pairs of E orbitals. We saw previously that 
the E orbitals were more or less nonbonding in the tetrahedral 

(23) Lauher, J. W. J.  Am. Chem. Soc. 1978, 100, 5305; 1979, 101, 2604. 
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case, and this implies that the three pairs of E orbitals in the 
present case will be nonbonding also and will interact weakly 
with each other. Consequently they will remain accessible, 
so that the only inaccessible orbitals are the six already found. 
This leaves 30 accessible orbitals for 60 electrons, as observed 
for example in Rh,(C0)12. 

Triatomic Clusters. The general rule fails here for a dif- 
ferent reason. Of the five “inaccessible” orbitals, three are 
symmetric with respect to the plane of the three atoms. They 
are like the P“ orbitals and one component of the P” shown 
in Figure 8, except that they are constructed from inward- 
pointing hybrids and they can be expected to be inaccessible 
to ligands. However the other two, the remaining components 
of the antibonding P* set, are antisymmetric with respect to 
the plane of the cluster and are in fact accessible to ligands 
above and below. Consequently there are only three genuinely 
inaccessible orbitals in this case, so that 24 accessible orbitals 
remain to take 48 electrons, as in Fe3(C0)12. In localized- 
orbital terms, the three inaccessible orbitals are just the three 
metal-metal antibonding orbitals, as one would expect. 
Nevertheless the other two “inaccessible” orbitals are high in 
energy, and it is not surprising that there exist 44-electron 
complexes such as Pt3(C0)62-, where all the ligands lie in the 
plane of the Pt, cluster24 and these orbitals remain empty. 

Actually, in this planar case, one would expect only 42 
electrons, because there is an A T  orbital constructed from Pt 
p orbitals which is nominally bonding (it is one of the P,“ set) 
but is high in energy and of the wrong symmetry to accept 
ligand electrons. In fact similar 42-electron complexes are 
known,25 and Lauher2, finds that the last electron pair in the 
44-electron cluster is accommodated not in the metal cluster 
but in an A2” orbital on the ligands. Moreover this is com- 
posed largely of CO K* orbitals, which supports the view 
expressed above that there can be significant bonding inter- 
action between the ligands. 

Diatomic Clusters. In the same way, the number of truly 
inaccessible orbitals in the diatomic is not 3 but 1, corre- 
sponding to the metal-metal antibonding P“ orbital. There 
are 17 accessible orbitals for 34 electrons, as in Fe2(C0)9 and 

8. Clusters with Interstitial Atoms 
A number of clusters have interstitial atoms at the center, 

as for example in HRk(CO)l< and RU~(CO)~,C. The hydride 
provides one orbital of S type, which can be expected to in- 
teract strongly with the inward-pointing S“ orbital to yield a 

Rh2(CO)8. 
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bonding and an antibonding combination. The new orbital 
therefore correlates with a new inaccessible orbital, and there 
is no change in the electron count. The same applies to the 
interstitial carbide, where the four new orbitals all become 
inaccessible, as pointed out by Lauher.2, Similarly, in the Rh13 
cluster in Rh13(C0)24H32-, where one of the Rh atoms is 
interstitial,26 the electron count is as for a 12-atom cluster, 
namely, 2(7n + 1) = 170. 
9. Conclusion 

The results of this paper may be summarized as follows. 
By assuming that a cluster compound can be treated ap- 

proximately as a set of concentric spherical shells, we have 
established a symmetry classification of the cluster orbitals. 
This classification uses the usual azimuthal and magnetic 
quantum numbers 1 and m, together with the parity, which 
for cluster orbitals derived from a or 6 atomic orbitals may 
be either even or odd for each 1. Interactions between orbitals 
differing in I, m, or parity are assumed to be negligible for 
the purposes of a qualitative description of the bonding. Using 
this classification for a transition-metal cluster carbonyl like 
co6(co)16, it is necessary to consider the interaction of at most 
six metal-cluster orbitals and two ligand-cluster orbitals at a 
time. This is an impressive simplification compared with the 
total number of 54 metal and 32 ligand orbitals, especially as 
the detailed structure of the complex does not have to be 
considered. 

The energy of a cluster orbital is approximately independent 
of its quantum number m, and an approximate expression for 
the energy of a set of orbitals with a given 1 and parity is easy 
to calculate. It follows very straightforwardly that the number 
of skeletal electron pairs needed for bonding in a boron hydride 
with n boron atoms is n + 1. It is also easy to show that the 
bonding energy is maximized if the polyhedron of atoms has 
as many triangular faces as possible. 

Another advantage of the method is that the form of the 
cluster orbitals is very easy to visualize, with the help of the 
illustrations given in this paper. This is particularly useful in 
dealing with transition-metal clusters, where the result in terms 
of electron counting is by no means so clear-cut as in the case 
of first-row atom clusters, largely because there are so many 
more orbitals to consider. The method identifies 2n - 1 orbitals 
(except for the tetrahedron, where there are six) which are 
likely to be vacant, leaving 7n + 1 available for cluster elec- 
trons. However some of the 2n - 1 may be occupied in par- 
ticular cases, modifying the electron count, and because the 
orbitals in question are so easily visualized, it is easy to see 
which are accessible to electrons in a given structure. 

(24) Longoni, G.; Chini, P. J .  Am. Chem. SOC. 1976, 98, 7225. 
(25) Green, M.; Howard, J. A,; Spencer, J. L.; Stone, F. G. A. J .  Chem. Sm., 

Chem. Commun. 1975, 3. Hidai, M.; Kokura, M.; Uchida, Y. J .  Or- 
ganomet. Chem. 1973, 52, 43 1. 
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